19 research outputs found

    Financial Brownian particle in the layered order book fluid and Fluctuation-Dissipation relations

    Full text link
    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of a comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner-layer, the correlation is strong and with short memory while, in the outer-layer, it is weaker and with long memory. By interpreting and estimating the contribution from the outer-layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation (FDR) in this non-material Brownian motion process

    Role of premature leptin surge in obesity resulting from intrauterine undernutrition

    Get PDF
    SummaryIntrauterine undernutrition is closely associated with obesity related to detrimental metabolic sequelae in adulthood. We report a mouse model in which offspring with fetal undernutrition (UN offspring), when fed a high-fat diet (HFD), develop pronounced weight gain and adiposity. In the neonatal period, UN offspring exhibited a premature onset of neonatal leptin surge compared to offspring with intrauterine normal nutrition (NN offspring). Unexpectedly, premature leptin surge generated in NN offspring by exogenous leptin administration led to accelerated weight gain with an HFD. Both UN offspring and neonatally leptin-treated NN offspring exhibited an impaired response to acute peripheral leptin administration on a regular chow diet (RCD) with impaired leptin transport to the brain as well as an increased density of hypothalamic nerve terminals. The present study suggests that the premature leptin surge alters energy regulation by the hypothalamus and contributes to “developmental origins of health and disease.

    Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information

    No full text
    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.ISSN:1539-3755ISSN:1063-651XISSN:1095-3787ISSN:1550-237

    Conserved Region 2.1 of Escherichia coli Heat Shock Transcription Factor σ(32) Is Required for Modulating both Metabolic Stability and Transcriptional Activity

    No full text
    Escherichia coli heat shock transcription factor σ(32) is rapidly degraded in vivo, with a half-life of about 1 min. A set of proteins that includes the DnaK chaperone team (DnaK, DnaJ, GrpE) and ATP-dependent proteases (FtsH, HslUV, etc.) are involved in degradation of σ(32). To gain further insight into the regulation of σ(32) stability, we isolated σ(32) mutants that were markedly stabilized. Many of the mutants had amino acid substitutions in the N-terminal half (residues 47 to 55) of region 2.1, a region highly conserved among bacterial σ factors. The half-lives ranged from about 2-fold to more than 10-fold longer than that of the wild-type protein. Besides greater stability, the levels of heat shock proteins, such as DnaK and GroEL, increased in cells producing stable σ(32). Detailed analysis showed that some stable σ(32) mutants have higher transcriptional activity than the wild type. These results indicate that the N-terminal half of region 2.1 is required for modulating both metabolic stability and the activity of σ(32). The evidence suggests that σ(32) stabilization does not result from an elevated affinity for core RNA polymerase. Region 2.1 may, therefore, be involved in interactions with the proteolytic machinery, including molecular chaperones

    Cellular fibronectin 1 promotes VEGF-C expression, lymphangiogenesis and lymph node metastasis associated with human oral squamous cell carcinoma

    No full text
    Lymph node metastasis (LNM) is associated with poor survival in patients with oral squamous cell carcinoma (OSCC). Vascular endothelial growth factor-C (VEGF-C) is thought to be responsible for increased lymphangiogenesis and LNM. Understanding of the mechanism by which VEGF-C expression is regulated in OSCC is thus important to design logic therapeutic interventions. We showed that inoculation of the SAS human OSCC cells expressing the venus GFP (V-SAS cells) into the tongue in nude mice developed LNM. V-SAS cells in LNM were isolated by FACS and re-inoculated into the tongue. This procedure was repeated eight times, establishing V-SAS-LM8 cells. Differential metastasis PCR array between the parental V-SAS and V-SAS-LM8 was performed to identify a molecule responsible for lymphangiogenesis and LNM. Fibronectin 1 (FN1) expression was elevated in V-SAS-LM8 cells compared to V-SAS-cells. V-SAS-LM8 tongue tumor showed increased expression of FN1 and VEGF-C, and promoted lymphangiogenesis and LNM compared with V-SAS tumor. Further, phosphorylation of focal adhesion kinase (FAK), a main downstream signaling molecule of FN1, was up-regulated, and epithelial-mesenchymal transition (EMT) was promoted in V-SAS-LM8 cells. Silencing of FN1 by shRNA in V-SAS-LM8 cells decreased FAK phosphorylation, VEGF-C expression and inhibited lymphangiogenesis and LNM. EMT was also reversed. The FAK phosphorylation inhibitor PF573228 also decreased VEGF-C expression and reversed EMT in V-SAS-LM8 cells. Finally, we detected intense FN1 expression in some clinical specimens obtained from OSCC patients with LNM. These results demonstrate that elevated expression of cellular FN1 and following activation of FAK lead to increased VEGF-C expression, lymphangiogenesis and LNM and promoted EMT in SAS human OSCC cells and suggest that FN1-phosphorylated FAK signaling cascade is a potential therapeutic target in the treatment of LNM in OSCC
    corecore